
Comparing NoSQL Solutions In a Real-World Scenario:
Aerospike, Cassandra Open Source, Cassandra DataStax,

Couchbase and Redis

Composed by Avalon Consulting, LLC

June 2015

1

Introduction

Specializing in cloud architecture, Emind Cloud Experts is an AWS Advanced

Consulting Partner and a Google Cloud Platform Premier Partner that assists

enterprises and startups establish secure and scalable IT operations. The following

benchmark employed a real-world use case from an Emind customer. The Emind

team was tasked with the following high-level requirements:

● Support a real-time voting process during massive live events (e.g. televised

election surveys or “America Votes” type game shows)

● Keep voters’ data anonymous but unique

● Ensure scalability to support surges in requests

Why Cloud-Based?

During a voting event, concurrent voting app users could spike to the 10’s of

millions. On the other hand, when there are no voting events, usage is practically

non-existent. Therefore, it is important to set up a cloud infrastructure that can be

quickly built up to handle usage spikes, and quickly torn down once a voting event

ends. Efficiently scaling the app's cloud infrastructure up and down to match an

event's time schedule can dramatically reduce cost. Thus a cloud-based

infrastructure is highly suitable for this task.

Composed by Avalon Consulting, LLC June 2015 2

Why NoSQL?

Since scalability and cost effectiveness were considered of utmost importance in

this project, Emind decided to use a NoSQL-type database to meet application

requirements rather than a relational database. All the NoSQL offerings considered

for this application provide efficient horizontal scaling that enables operators to

quickly add or remove resources in response to the sudden spikes inherent in a

voting application.

Application Flow

High performance is vital to optimize the apps’ user experience. The application

flow starts on a client device, which makes a call to a stateless application server

and sends the user’s vote. The application server sends the vote to the database for

recording. During this flow, it is important that throughput remain high enough to

handle usage spikes, while ensuring low latency.

The following figure represents the benchmark application flow:

Composed by Avalon Consulting, LLC June 2015 3

Each test load was configured to run for 60 seconds, creating 35 threads and 5000

connections.

The following is the wrk command used to execute each test:

wrk -c 5000 -t 35 -d 60 "http://172.31.62.126/vote?u=1&v=y”

The NoSQL Candidates

The following NoSQL databases were tested:

● Aerospike

● Cassandra Open Source

● Cassandra DataStax Enterprise In Memory

● Couchbase

● Redis Enterprise Cluster

A Go mockup application, "mockapp" was created to simulate the voting app

(https://github.com/emind-systems/real_time_vote_benchmark).

The mockapp was responsible for providing stateless application server endpoints,

and for sending voting requests to each NoSQL database being benchmarked. The

wrk (https://github.com/wg/wrk) HTTP benchmarking tool was used to generate

load on each application setup. It captured throughput and latency metrics to

determine which database was best suited for the scenario’s requirements.

Composed by Avalon Consulting, LLC June 2015 4

https://github.com/emind-systems/real_time_vote_benchmark
https://github.com/wg/wrk

Finally, Avalon Consulting, LLC was hired to work with each vendor (refer to

Appendix A for the introductory email sent to vendors) in order to determine the

optimal configuration for each NoSQL database solution and to validate the results

by re-running all tests. All vendors responded, which ensured that each system was

configured correctly.

The following precautions were taken to fully optimize each product:

Aerospike

● As recommended by the vendor, Avalon referred to its documentation for

optimal set-up and configuration of the system.

Cassandra Open Source and DataStax Enterprise In-Memory

● DataStax recommended that Cassandra DataStax Enterprise In-Memory be

implemented. However, the company raised a concern that the benchmark

scenario is not optimal for this database.

● Consequently, Avalon decided to test both Open Source Cassandra and

Cassandra DataStax Enterprise In-Memory.

Couchbase

● In order to avoid disk IO and obtain the best performance, Avalon verified

that the entire Couchbase dataset fit into RAM.

Redis

● As recommended by the vendor, Avalon referred to its documentation for

optimal set-up and configuration of the system.

Composed by Avalon Consulting, LLC June 2015 5

Benchmark Methodology

Setup

Each test run utilized 3 servers:

● WRK Server – used to run the workload and send requests to the App Server:

○ c4.large EC2 instance

● App Server – used to run the Go HTTP server plus the Mockapp server

software:

○ c4.8xlarge EC2 instance

○ During initial testing with c4.large, it was clear that the client server

was going to be a bottleneck. Instead of scaling out with more servers,

Avalon determined that the larger c4.8xlarge would be able to handle

the load without additional servers.

● Database Server – used to run each NoSQL database:

○ c4.large EC2 instance

Composed by Avalon Consulting, LLC June 2015 6

Database Configuration

For all systems, each database server had enough RAM to store the entire dataset in

memory. The exact database configuration for each of the vendors was:

Aerospike

● Version: 3.5.9

● OS: Amazon Linux 2015.03

● AWS disks initialized (or pre-warmed) using the dd tool

Cassandra Open Source

● Version: 2.1.3

● OS: Ubuntu 14.04

Cassandra DataStax Enterprise In-Memory

● Datastax Enterprise 4.6.5

● OS: Ubuntu 14.04

● Configured for MemoryOnlyStrategy

Couchbase

● Version: Couchbase Enterprise 3.0.3

● OS: Ubuntu 14.04

● Replicas disabled

Redis Enterprise Cluster

● Version: 0.99.7-3

● OS: Ubuntu 14.04

Composed by Avalon Consulting, LLC June 2015 7

Benchmark Process

Here is how the overall benchmark was conducted:

● Emind set up the initial infrastructure for the benchmark. This included

setting up the servers for running wrk, the Go HTTP code and each NoSQL

database.

● Emind wrote the initial code for running the HTTP server, capturing user

input, and writing that user input to each database.

● Avalon Consulting, LLC reviewed and optimized the initial code, making

changes where necessary.

● Avalon Consulting, LLC reviewed each server setup. This process included

communicating with each vendor to determine optimal settings.

● Avalon Consulting, LLC reviewed the code for running each HTTP server to

ensure it was as similar as possible for each system.

● Avalon Consulting, LLC executed every test in each newly configured

environment.

Composed by Avalon Consulting, LLC June 2015 8

Final Results

Summary of Application Throughput and Latency

Product App Req/Sec App Latency(ms)

Aerospike 16481.55 161.94

Cassandra Open Source 5234.52 381.31

Cassandra DSE In-Memory 6659.26 372.31

Couchbase 4417.15 394.42

Redis Enterprise Cluster 37038.82 71.22

* Raw data results are provided in Appendix B

Composed by Avalon Consulting, LLC June 2015 9

Composed by Avalon Consulting, LLC June 2015 10

Summary

This benchmark determined which NoSQL database would perform best with the

dynamic load of a voting application scenario. For this particular workload, in

which a large amount of ‘write’ requests were made, Redis Enterprise Cluster was

the clear winner, Aerospike came in second with about half the throughput and

double the latency, and the rest of the NoSQL databases were way behind. The test

results are also applicable to other use cases where massive and continuous ‘write’

operations are required, such as ingestion data-store for a real-time analytics

application accessed by API, or for an Internet of Things (IoT) application that

receives telemetry data from a large amount of sensors.

Composed by Avalon Consulting, LLC June 2015 11

Appendix A

Intro Email to Vendors

Composed by Avalon Consulting, LLC June 2015 12

Appendix B

Raw Data Results

Aerospike

Running 1m test @ http://172.31.62.126/vote?u=1&v=y

 35 threads and 5000 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 161.94ms 123.90ms 1.99s 67.74%

 Req/Sec 475.56 386.61 14.18k 77.07%

 990530 requests in 1.00m, 99.19MB read

 Socket errors: connect 0, read 0, write 0, timeout 56

Requests/sec: 16481.55

Transfer/sec: 1.65MB

Cassandra Open Source

Running 1m test @ http://172.31.62.126/vote?u=1&v=y

 35 threads and 5000 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 381.31ms 466.79ms 2.00s 83.33%

 Req/Sec 174.43 160.60 1.75k 73.46%

 314594 requests in 1.00m, 31.50MB read

 Socket errors: connect 0, read 0, write 0, timeout 16849

Requests/sec: 5234.52

Transfer/sec: 536.74KB

Composed by Avalon Consulting, LLC June 2015 13

Cassandra DataStax Enterprise In-Memory

Running 1m test @ http://172.31.62.126/vote?u=1&v=y

 35 threads and 5000 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 372.31ms 390.91ms 2.00s 83.05%

 Req/Sec 204.09 153.23 1.15k 66.63%

 400219 requests in 1.00m, 40.08MB read

 Socket errors: connect 0, read 0, write 0, timeout 6826

Requests/sec: 6659.26

Transfer/sec: 682.83KB

Couchbase

Running 1m test @ http://172.31.62.126/vote?u=1&v=y

 35 threads and 5000 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 394.42ms 469.91ms 2.00s 82.95%

 Req/Sec 187.50 153.00 1.76k 64.79%

 265463 requests in 1.00m, 26.58MB read

 Socket errors: connect 0, read 0, write 0, timeout 11358

Requests/sec: 4417.15

Transfer/sec: 452.93KB

Redis Enterprise Cluster

 35 threads and 5000 connections

 Thread Stats Avg Stdev Max +/- Stdev

 Latency 71.22ms 43.85ms 661.01ms 73.02%

 Req/Sec 1.06k 732.44 9.92k 75.22%

 2225247 requests in 1.00m, 222.96MB read

Requests/sec: 37038.82

Transfer/sec: 3.71MB

Composed by Avalon Consulting, LLC June 2015 14

Running 1m test @ http://172.31.62.126/vote?u=1&v=y

