
ReJSON = {
"id": "old dog",
"activity": "new trick"

}
Itamar Haber
@itamarhaber

What do Chuck Norris, JSON & Redis
have in common?

They're everywhere.

"Any application that can be written in
JavaScript, will eventually be written in

JavaScript."

Attwod's Law

https://blog.codinghorror.com/the-principle-of-least-power/
https://blog.codinghorror.com/the-principle-of-least-power/

"Any database that can store JSON,
will eventually store JSON."

Orthodox storage of JSON in Redis

With Redis' core data structures you can store JSON

1. Raw in String keys: the document is stored in serialized
form
a. Lua may be used to encode/decode on the fly
b. MessagePack is option with additional

encoding/decoding
2. Decomposed in Hash keys: the data is deserialized to

key-value pairs

Raw JSON in String keys - DEMO!

127.0.0.1:6379> SET rawjson '{"foo": "bar",

"ans": 42}'

OK

127.0.0.1:6379> GET rawjson

"{\"foo\": \"bar\", \"ans\": 42}"

Raw JSON String keys (orthodox #1)

● Advantages
● Data is stored serialized - perfect for opaque caching,

i.e. entire "BLOB" read/write
● Medium memory overhead (JSON is readable)

● Disadvantages
● Element access is impossible - entire bulk must be read,

processed and possibly written back by the client. This
adds traffic, latency and complexity to application code.

● Modifications are therefore not atomic

Raw JSON in String keys with Lua (#1.a)

$ cat json-get-path.lua

local js = redis.call('GET', KEYS[1])

local v = cjson.decode(js)

-- Parse the path

local r = ...

local rjs = cjson.encode(r)

return rjs

Raw JSON/MessagePack String keys and Lua

● Additional advantages
● Elements are accessible
● Updates are atomic
● MessagePack has lower memory overhead and is faster

(vs. JSON)
● Disadvantages

● Access time depends on JSON's size, or O(N)
● Lua isn't for everyone and introduces more code to

maintain

Decomposed Hash Keys (orthodox #2)

127.0.0.1:6379> HSET decomposed foo bar

(integer) 1

127.0.0.1:6379> HSET decomposed ans 42

(integer) 1

...

Decomposed Hash Keys

● Advantages
● Elements are accessible in O(1)

● Disadvantages
● No native way to decode/encode to/from JSON/Hash

means a client-side or Lua implementation
● No nesting means only for flat objects (dictionaries)
● Only String/"Number" data types
● Redis Hash memory overheads

ReJSON = Redis + JSON

ReJSON in one slide [Preview Release]

● A custom JSON data type for Redis (v4 Modules API)
● Keys can contain any valid JSON value

● Scalars, objects or arrays
● Nested or not

● Data is stored decoded in binary format
● JSONPath-like syntax for direct access to elements
● Strongly-typed atomic commands

127.0.0.1:6379> JSON.SET scalar . '"Hello JSON!"'

OK

127.0.0.1:6379> JSON.SET object . '{"foo": "bar",

"ans": 42}'

OK

127.0.0.1:6379> JSON.GET object

"{\"foo\":\"bar",\"ans\":42}"

127.0.0.1:6379> JSON.GET object .ans

"42"

ReJSON - basic SET and GET

127.0.0.1:6379> ^C

$ redis-cli --raw

127.0.0.1:6379> JSON.GET object INDENT "\t"

NEWLINE "\n" SPACE " "

{

"foo": "bar",

"ans": 42

}

ReJSON - who's the prettiest of them all?

JSON value -> ReJSON tree data structure

{

"foo": "bar",

"ans": 42

}

Type: object

foo
ans

Type: string
"bar"

Type: number
42

root

json-sl

ReJSON for storing JSON data

● Advantages
● Full and intuitive JSON support
● Works with any Redis client, no extra coding needed
● Elements are efficiently accessible by path (read/write)

● Disadvantages
● Serializing the value to JSON is "expensive"
● Higher memory overhead (vs. serialized form)

A note about paths

There are at least two standards for JSON paths…
… which means there is no standard for JSON paths.

ReJSON implements a subset of the seemingly more popular
JSONPath "standard", basically:

● Canonical, dot-separated notation
● Brackets denote keys or list indices
● Example: .foo.bar[0]

Performance: 380 bytes, 3 nesting levels

Throughput Average latency
ReJSON Raw JSON & Lua MessagePack & Lua

Performance: 3468 bytes, 3 nesting levels

Throughput Average latency
ReJSON Raw JSON & Lua MessagePack & Lua

Performance: 39491 bytes, 3 nesting levels

Throughput Average latency
ReJSON Raw JSON & Lua MessagePack & Lua

General JSON.DEL, JSON.GET, JSON.MGET, JSON.SET &

JSON.TYPE

Numbers JSON.NUMINCRBY & JSON.NUMMULTBY

Strings JSON.STRAPPEND & JSON.STRLEN

Objects JSON.OBJKEYS & JSON.OBJLEN

Arrays JSON.ARRAPPEND, JSON.ARRINDEX,

JSON.ARRINSERT, JSON.ARRLEN, JSON.ARRPOP &

JSON.ARRTRIM

Other JSON.RESP

ReJSON commands

Where and when

Source code: https://github.com/RedisLabsModules/rejson

Documention: https://redislabsmodules.github.io/rejson

● Now: preview release

● Future: data compression, schema validation, secondary

indices, querying & more

● Your feature and pull requests are welcome :)

https://github.com/RedisLabsModules/rejson
https://redislabsmodules.github.io/rejson

Thank you, woof!

